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General concentration-jump, velocity-slip, and temperature-jump conditions on solid surfaces in a rare-
fied multi-component gas flow are developed using the kinetic theory of gases. The surface is allowed to
be catalytic and hence some or all of the species may take part in surface reactions. The presented model
provides general boundary conditions which can be simplified according to the problem under consider-
ation. In some limiting cases, the results of the current work are compared to the previously available and
widely used boundary conditions. The details of the mathematical procedure are also provided to give a
better insight about the physical importance of each term in the slip/jump boundary conditions. Also the
disagreements between previously reported results are investigated to arrive at the most proper expres-
sions for the slip/jump boundary conditions. The temperature-jump boundary condition is also modified
to handle polyatomic gas flows unlike previously reported studies which were mostly concerned with
monatomic gases.
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1. Introduction

In recent years, there has been intensive research on microflu-
idic systems for compact reactor technologies. Investigations have
been conducted to better understand and predict the flow, heat
transfer and mass transfer properties of so-called microreactors.
The microreactor technology combines several advantages such
as high material compatibility, high surface area to volume ratio,
and large potential for heat and mass transfer, with highly sophis-
ticated and economic fabrication processes.

The continuum equations for mass, momentum and energy con-
servation are usually employed to study the motion of a fluid, in
which the properties of the fluid in each point can be defined as
an average of microscopic characteristics of the neighbouring
points. The Knudsen number, defined as the ratio of molecular
mean-free-path to the characteristic length scale of the problem,
can be used to estimate the applicability of the continuum equa-
tions in dealing with problems that involve very small length scales
or rarefied conditions. For finite values of the Knudsen number Kn,
the continuum equations cannot be applied directly and either they
should be modified or molecular models should be employed. In the
case of rarefied gas flow, it is known that for Kn < 0.001 the contin-
uum models are valid, and for Kn > 10 the free-molecular models
should be employed. In the mid range, neither continuum models
nor free-molecular models are satisfactory and another classifica-
ll rights reserved.
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tion is needed: slip flow for the range 0.001 < Kn < 0.1 and transi-
tion flow for the range 0.1 < Kn < 10 are considered to be
appropriate descriptions [1]. In the slip flow regime, the continuum
equations can still be employed but proper velocity-slip and tem-
perature and concentration-jump boundary conditions should be
specified, which is the subject matter of the present work.

As the pressure is lowered, i.e., the gas is rarefied, or the charac-
teristic length scale of the problem approaches the mean molecular
free path, i.e., micro flows, the number of inter-molecular collisions
decreases and eventually there comes a stage in which the number
of collisions between molecules are rare compared to the number
of collisions with other bodies such as the surrounding walls, in
which case each molecule acts independently to bring forth the
gas properties [2]. This behavior is also confirmed by experimental
observations. As the pressure is lowered, it is observed that the gas
loses its intimate contact with solid bodies. In viscous flow over so-
lid bodies, the gas ‘‘slips” over the surface, and in the case of heat or
mass transfer, a temperature or concentration-jump is observed
between the solid surface and the adjacent gas layer. According
to Kennard [2], Knudt and Warburg reported the velocity-slip in
low-pressure gases for the first time.

Fluid flow cannot be described by the Navier–Stokes equations
within the Knudsen layer at the wall, which is of the order of 1
molecular mean-free-path in thickness. The presence of gradients
causes the velocity distribution function to deviate from the
equilibrium distribution significantly. Ideally, the Boltzmann equa-
tion should be solved in the Knudsen layer and matched with the
solution of the Navier–Stokes equations in the bulk flow region.
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Nomenclature

~d species diffusion vector
D species diffusion coefficient
DT thermal diffusion coefficient
eint internal energy of molecule
f velocity distribution function
F molecular mass flux
J mass flux
kB Boltzmann constant
kw reaction rate constant
K thermal conductivity
Kn Knudsen number
m molecular mass
n number density
N number density flux
p pressure
Pr Prandtl number
R specific gas constant, kB/m
T temperature
U mass averaged velocity
V total velocity
V0 peculiar (thermal) velocity
x, y, z cartesian coordinates
~X body force vector

Greek symbols
c recombination coefficient
�c specific heat ratio, cp/cv

f number of internal degrees of freedom
h accommodation coefficient
k molecular mean-free-path
l viscosity
n number of terms in the Sonine polynomial
q density
r total degrees of freedom
s Newtonian stress
U normalized perturbation

Subscript and superscripts
+/� outward/inward directions normal to the wall
M Maxwellian
NS number of species
s edge of the Knudsen layer
w wall
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However, without solving the Boltzmann equation, it is possible to
find an approximate Navier–Stokes solution by using suitable slip
conditions [1–7]. The first velocity-slip model to address this issue
was proposed by Maxwell, who derived a velocity-slip equation
based on a Taylor series expansion retaining terms up to first-or-
der. Some other arbitrary extensions to this model have been pro-
posed by others involving higher order or non-linear Kn terms.

The effects of velocity-slip and temperature-jump on flow and
heat transfer characteristics have been extensively studied. How-
ever, there exists very limited work on non-equilibrium transport
in reacting flows. In the case of multi-species transport, another
important effect analogous to temperature-jump should be taken
into account, i.e., the concentration-jump. The investigation of
the concentration-jump was initially performed by Kramers et al.
[12] based on the work of Maxwell on velocity-slip and tempera-
ture-jump. Concentration-jump not only affects the rate of reaction
and local species concentration, but also velocity-slip and temper-
ature-jump in both reacting and non-reacting systems.

Many rate-limiting adsorption/desorption reactions are very
sensitive to local temperatures and hence the proper modeling
and computation of temperature along with the local species con-
centration is vital for an accurate prediction of the behavior of such
systems. The effect of temperature-jump on the performance of
reactive systems was investigated and verified experimentally by
Shankar et al. [9] using low-pressure catalytic combustion systems.
The concentration-jump phenomenon has been detected in simu-
lations of reacting gas mixtures by Bird [10] and Papadopoulos
and Rosner [11]. Neglecting the concentration-jump can cause
problems in predicting the performance of reactive systems both
directly (inaccurate local concentration) and indirectly (inaccurate
temperature field).

Generally, the slip (jump) condition is assumed to occur in a
very thin layer adjacent to the solid boundary, normally of the or-
der of the mean-free-path of molecules. Two main approaches are
usually followed to arrive at proper slip/jump boundary conditions.
The first approach is the so-called half-flux method in which the
flux of conserved quantities such as mass, momentum and energy
are assumed to be constant across the Knudsen layer. The second
method, initially proposed by Grad [3], employs essentially the
same assumptions, but it is a more rigorous mathematical descrip-
tion of the problem, which alleviates some of the difficulties
encountered in the half-flux method associated with reference
velocities and calculation of fluxes.

One of the most detailed investigations on the concentration-
jump as well as velocity-slip and temperature-jump was per-
formed by Scott [13,14] and Gupta et al. [15]. They followed the
half-flux method to determine the velocity-slip and temperature
and concentration-jump boundary conditions for a multi-compo-
nent reacting flow. However, as pointed out by Goniak et al. [16],
the choice of reference velocity in the definition of fluxes at the
edge of the Knudsen layer was inconsistent with the fluxes at the
wall. This issue will be discussed in detail later. Also, in the deriva-
tion of the velocity-slip and temperature-jump boundary condi-
tions, Gupta et al. [15] have neglected possible chemical
reactions at the surface. Based on the similarity between heat
and mass transfer, Rosner et al. [17] developed an expression for
concentration-jump in the transport of multi-species flows with-
out accounting for reaction terms.

The most accurate, but the least acknowledged, study on slip
boundary conditions for a multi-component monatomic gas flow
on catalytic surfaces is given by Kiryutin and Tirskii [18]. They em-
ployed the half-flux method in order to arrive at the boundary con-
ditions by choosing a proper reference velocity for the velocity
distribution function and fluxes across the edge of Knudsen layer
and at the wall. The only major restriction in their model is that
it is for monatomic gases, and therefore, their model fails to repro-
duce the commonly used temperature-jump boundary condition
for polyatomic gases.

Recently Xu and Ju [19] derived an expression for the concen-
tration-jump based on the kinetic theory, following the half-flux
method. They investigated the effect of concentration-jump on
the rate of catalytic reactions in the numerical modeling of micro-
scale chemical reactors. Their model is based on a simplified veloc-
ity distribution function in which terms such as viscous stresses,
mass fluxes and thermal diffusion are neglected. Also, in modeling
the velocity distribution of molecules reflected from the wall, the
effect of possible wall reactions was not considered. However,
more recently, Xu and Ju [20] derived a more general expression
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for concentration-jump compared to their previous work, but it
carries some simplifying assumptions and is inconsistent with
well-established expressions in special or limiting cases. They have
assumed that all of the molecules leaving the wall have a Maxwell-
ian velocity distribution with no specular reflection.

In the present work, general slip/jump boundary conditions are
derived for velocity, temperature and concentration in a multi-
component gas flow on a catalytic surface following Grad’s method
[3]. In order for the model to be applicable to practical problems
(i.e., polyatomic gas flows) correction terms are added to the tem-
perature-jump boundary condition as well. It should be noted that
a key objective of the current work is to present a clearer picture of
the underlying principles and assumptions in the complex deriva-
tion of slip/jump boundary conditions so that they can be well
understood and properly simplified in practical engineering
problems.

2. Slip model

In order to avoid the complexity of solving the Boltzmann equa-
tion in rarefied gas flows, in the slip flow regime one can assign
imaginary velocity, temperature and concentration values (slip/
jump values) at the boundary so that the standard continuum
equations can still be employed safely outside the Knudsen layer
[1–7]. The macroscopic properties of the gas can be obtained if
the velocity distribution of the molecules f is known.

Consider a wall with gas molecules impinging on it where cat-
alytic reactions could also take place. In order to derive the slip
boundary conditions, the velocity distribution function for wall-re-
flected molecules f+ should be specified provided that the incident
distribution f� is given. The most commonly used reflection model
is the so-called specular-diffusive model which, assuming the
boundary is perpendicular to the y direction, can be written as [3]

fþi ðVix;Viy;VizÞ ¼ ð1� hiÞf�i ðVix;�Viy;VizÞ

þ ðhi � ciÞ
ni;w

ð2pkBTw=miÞ3=2 exp � V2
i

2kBTw=mi

 !
;

Viy > 0 ð1Þ

where Tw is the wall temperature, hi is the accommodation coeffi-
cient and ci is the recombination coefficient, which represents the
probability of appearance (ci < 0) or disappearance (ci > 0) of species
i at the surface due to chemical reactions. This expression states
that a certain fraction (1 � hi) of the incident molecules are specu-
larly reflected by the wall (without reaching the equilibrium state),
while the remaining molecules are captured by the wall and are
either consumed (or produced) or re-emitted with an equilibrium
distribution at the prevailing wall temperature. It is important to
note that ni,w is defined as the wall number density prior to chem-
ical reactions on the catalytic surface. Thus, double-accounting of
the reaction effects through both ci and ni,w in Eq. (1) is avoided.
This definition of number density is also appropriate for determin-
ing the rate of production (or consumption) of species at the wall,
since it represents the reactant concentration required for a typical
catalytic reaction rate expression as shown later.

In order to be consistent with the approximation level associ-
ated with the Navier–Stokes equations, the velocity distribution
function near the wall can be described by the first-order accurate
Chapman–Enskog distribution function [1]. To this approximation,
the velocity distribution function for each species ‘‘i” in a non-
uniform multi-component mixture can be written as

fiðVix;Viy;VizÞ ¼ f M
i ð1þ UiÞ ð2:aÞ

f M
i ðVix;Viy;VizÞ ¼

ni

ð2pkBT=miÞ3=2 exp � V 02i
2kBT=mi

 !
ð2:bÞ
where f M
i is the Maxwellian distribution function, ni and mi are the

number density and molecular mass of species ‘‘i”, T is the temper-
ature, kB is the Boltzmann constant and ~V 0 i ¼ ~Vi � ~U is the peculiar
(or thermal) velocity of the gas molecules with ~Vi and ~U being the
molecular velocity and mass averaged gas velocity, respectively.
The normalized perturbation to the equilibrium distribution Ui cor-
responds to the Navier–Stokes approximation in the solution of the
Boltzmann equation. Using the Chapman–Enskog method to first-
order approximation, Ui is given by [1]

Ui ¼ � ai0 þ ai1
5
2
�miV

02
i

2kBT

 !" #
~V 0i �

o ln T
o~r

� �

� mi

2kBT
~V 0 i~V

0
i �

1
3

V 02i I
� �

:
o~U
o~r

" #
bi0 þ n

ffiffiffiffiffiffiffiffiffiffiffi
mi

2kBT

r XNS

j¼1

cj
i0
~V 0i �~dj ð3Þ

where ai0; ai1; bi0 and cj
i0 are coefficients of expansions in the Sonine

polynomials which will be described later,~r is the position vector,
I is the unit tensor, and ~dj is the diffusion vector related to the
diffusion velocity of species ‘‘j” given by [7]

~dj ¼ ~r nj

n

� �
þ nj

n
� njmj

q

� �
~r ln p� njmj

p
~Xj �

1
q

XNS

k¼1

nkmk
~Xk

 !
ð4Þ

where ~Xj is the body force acting on species j.

2.1. Concentration-jump

In order to derive the concentration-jump boundary condition,
the net mass flux of each species normal to the boundary is deter-
mined as

Fi ¼
Z þ1

�1

Z þ1

0

Z þ1

�1
miViy½fþi ðVix;Viy;VizÞ

� f�i ðVix;�Viy;VizÞ�dVix dViy dViz ð5Þ

On the other hand, the net mass flux of each species normal to the
wall can be written in terms of macroscopic properties as [7]

Fi ¼
mini;s

2
2kBTs

mi

� �1=2

�ai0
o ln T
oy
þ n

XNS

j¼1

cj
i0djy

 !
s

ð6Þ

where djy is the y component of the diffusion velocity of species j
(see Eq. (4)). Equating these two equations and calculating the inte-
grals involved results in the following concentration-jump bound-
ary condition:

ni;w

ni;s

Tw

Ts

� �1=2

¼ hi

hi � ci
1þ bi0

6
oUx

ox
þ oUz

oz
� 2

oUy

oy

� �� �
s

þ ð2� hiÞ
ffiffiffi
p
p

2ðhi � ciÞ
�ai0

o ln T
oy
þ n

XNS

j¼1

cj
i0djy

 !
s

ð7Þ

It should be noted that the above equation is not an explicit expres-
sion for ni,s because the coefficients ai0 and cj

i0 are functions of ni,s.
Explicit expressions for ni,s can be obtained by specifying the
surface reaction rate, which will be discussed for special cases in
Section 3.

2.2. Velocity-slip

In order to arrive at the velocity-slip boundary condition, one
can multiply Eq. (1) by miV

0
ixV 0iy ¼ miðVix � UxÞViy and integrate to

obtain

Sþi;xy þ ð1� hiÞS�i;xy þ ðhi � ciÞUxni;wmi

ffiffiffiffiffiffiffiffiffiffiffi
kBTw

2pmi

s
¼ 0 ð8Þ

where

S�i;xy ¼ �
Z þ1

�1
dVix

Z þ1

�1
dViz

Z þ1

0
miV

0
ixV 0iyf�i ðVix;�Viy;VizÞdViy ð9Þ
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Integration of the above equation using Eqs. (2) and (3) yields

S�i;xy ¼ �
ni;skB

4
ffiffiffi
p
p ðai1 � 2ai0Þ

oT
ox

� �
s
� ni;skBTs

4
bi0

oUx

oy
þ Uy

ox

� �
s

� nni;skBTs

2
ffiffiffi
p
p

XNS

j¼1

cj
i0djx

 !
s

ð10Þ

Substituting this in Eq. (8) and summing over all species, the follow-
ing velocity-slip expression is obtained:
Ux ¼

PNS
i¼1ni;s

ffiffiffiffiffiffiffi
kBTs

2

q
hi ai0 � ai1

2

	 

o ln T

ox � n
PNS

j¼1cj
i0djx

� �
s
þ ð2� hiÞ

ffiffiffi
p
p bi0

2
oUx
oy þ

oUy

ox

� �
s

h i
PNS

i¼1ðhi � ciÞni;w

ffiffiffiffiffi
Tw
Ts

q ffiffiffiffiffiffi
mi
p ð11Þ
Considering Eq. (7), the velocity-slip boundary condition can also be
written as
Ux ¼

PNS
i¼1ni;s

ffiffiffiffiffiffiffi
kBTs

2

q
hi ai0 � ai1

2

	 

o ln T

ox � n
PNS

j¼1cj
i0 djx

� �
s
þ ð2� hiÞ

ffiffiffi
p
p bi0

2
oUx
oy þ

oUy

ox

� �
s

h i
PNS

i¼1ni;s
ffiffiffiffiffiffi
mi
p

hi 1þ bi0
6

oUx
ox þ

oUz
oz � 2 oUy

oy

� �� �
s
þ ð2�hiÞ

ffiffi
p
p

2 n
PNS

j¼1
cj

i0djy � ai0
o ln T
oy

 !
s

" # ð12Þ
Note that in order to arrive at the above relation for velocity-slip in
the x direction, Eq. (1) was multiplied by miV

0
ixV 0iy ¼ miðVix � UxÞViy.

In the same manner, one can multiply Eq. (1) by miV
0
izV
0
iy ¼

miðViz � UzÞViy and follow the same steps to arrive at a velocity-slip
boundary condition in the z direction as
Uz ¼

PNS

i¼1
ni;s

ffiffiffiffiffiffiffi
kBTs

2

q
hi ai0 � ai1

2

	 

o ln T

oz � n
PNS

j¼1
cj

i0 djz

 !
s

þ ð2� hiÞ
ffiffiffi
p
p bi0

2
oUz
oy þ

oUy

oz

� �
s

" #

PNS

i¼1
ðhi � ciÞni;w

ffiffiffiffiffi
Tw
Ts

q ffiffiffiffiffiffi
mi
p

ð13Þ
2.3. Temperature-jump

In order to proceed with the temperature-jump boundary con-
dition, Eq. (1) is multiplied by miV

0
iyV 02i ¼ miViyðV2

i � 2~Vi � ~U þ U2Þ
and integrated to obtain

hþi;y þ ð1� hiÞh�i;y ¼ ðhi � ciÞh
M
i;y ð14Þ

where

h�i;y ¼ �
Z þ1

�1
dVix

Z þ1

�1
dViz

Z þ1

0
miV

0
iyV 02i f�i ðVix;�Viy;VizÞdViy ð15Þ

and

hM
i;y ¼

Z þ1

�1
dVix

Z þ1

�1
dViz

Z þ1

0
miV

0
iyV 02i f M

i ðVix;Viy;VizÞdViy ð16Þ

Performing the integrations in the above equations yields

h�i;y ¼ �
ni;smiffiffiffi

p
p 2kBTs

mi

� �3=2

þ 5ni;smi
kBTs

2mi

� �3=2

ðai1 � ai0Þ
o ln T
oy

� ni;smi

4
ffiffiffi
p
p 2kBTs

mi

� �
bi0

oUx

ox
þ oUz

oz
� 2

oUy

oy

� �
s

þ 5nni;smi
kBTs

2mi

� �3=2XNS

j¼1

cj
i0djy

 !
s

ð17Þ
and

hM
i;y ¼ ni;wmiU

2

ffiffiffiffiffiffiffiffiffiffiffi
kBTw

2pmi

s
þ ni;wmiffiffiffi

p
p 2kBTw

mi

� �3=2

ð18Þ

These expressions account only for the translational energy of mol-
ecules and do not include the internal (rotational and vibrational)
energy of the incident and reflected molecules, which becomes
important in the case of polyatomic gases. In order to include the
internal energy of molecules, one can simply multiply the number
flux Ni of incident (or reflected) species by the average internal en-
ergy carried by each molecule. Thus, the above expressions are
modified using:

H�i;y ¼ h�i;y þ N�i eint
i;s ð19Þ
and

HM
i;y ¼ hM

i;y þ NM
i eint

i;w ð20Þ

in which eint
i ¼ kBTf is the internal energy of the molecule character-

ized by the number of internal degrees of freedom f. The internal
number of degrees of freedom is related to the total degrees of free-
dom r through

r ¼ fþ 3 ð21Þ

This way, the three degrees of freedom associated with the transla-
tional motion of molecules is excluded in the calculation of internal
energy. The number density flux of the incident and reflected mol-
ecules can be determined as

Nþi ¼
Z þ1

�1
dVix

Z þ1

�1
dViz

Z þ1

0
ViyfiðVix;Viy;VizÞdViy ð22:aÞ

N�i ¼
Z þ1

�1
dVix

Z þ1

�1
dViz

Z 0

�1
ViyfiðVix;Viy;VizÞdViy ð22:bÞ

NM
i ¼

Z þ1

�1
dVix

Z þ1

�1
dViz

Z þ1

0
Viyf M

i ðVix;Viy;VizÞdViy ð22:cÞ

Next, Eq. (22) are substituted into Eqs. (19) and (20) and incorpo-
rated in Eq. (14) with hi replaced by Hi. Finally, summing over all
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species and rearranging, the following temperature-jump equation
is obtained

Ts

Tw

� �3=2

¼
PNS

i¼1ðhi � ciÞ
ni;wffiffiffiffi

mi
p 1þ U2mi

4kBTw
þ f

4

� �
PNS

i¼1
ni;sffiffiffiffi

mi
p ½ð2� hiÞZ1 þ hiZ2�

ð23:aÞ

where

Z1 ¼
5
ffiffiffi
p
p

8
ðai1 � ai0Þ

o ln T
oy
þ n

XNS

j¼1

cj
i0djy

 !
s

ð23:bÞ

Z2 ¼ 1þ f
4

� �
þ bi0

12
3þ f

2

� �
oUx

ox
þ oUz

oz
� 2

oUy

oy

� �
s

þ f
ffiffiffi
p
p

8
ai0

o ln T
oy
� n

XNS

j¼1

cj
i0djy

 !
s

ð23:cÞ

Considering Eq. (7), the temperature-jump boundary condition can
also be written as
Ts

Tw
¼

PNS
i¼1

ni;sffiffiffiffi
mi
p hi 1þ bi0

6
oUx
ox þ

oUz
oz � 2 oUy

oy

� �� �
s
þ ð2�hiÞ

ffiffi
p
p

2 n
PNS

j¼1cj
i0djy � ai0

o ln T
oy

� �
s

h i
1þ U2mi

4kBTw
þ f

4

� �
PNS

i¼1
ni;sffiffiffiffi

mi
p ½ð2� hiÞZ1 þ hiZ2�

ð24Þ
3. Simplified boundary conditions

The previously obtained slip/jump conditions are for the gen-
eral case and the coefficients in the Sonine polynomials need to
be expressed in terms of the usual transport properties in order
to be applicable to practical engineering problems. The Sonine
expansion coefficients ai0, ai1, bi0 and cj

i0 are obtained using varia-
tional techniques and are expressed in terms of collision integrals.
However, they can also be directly related to transport properties
as follows [7]:

DT
i ðnÞ ¼

nimi

2

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

mi

s
ai0ðnÞ ð25Þ

KðnÞ ¼ �5
4

kB

XNS

i¼1

ni

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

mi

s
ai1ðnÞ ð26Þ

lðnÞ ¼ 1
2

kBT
XNS

i¼1

nibi0ðnÞ ð27Þ

DijðnÞ ¼
qni

2nmj

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

mi

s
cj

i0ðnÞ ð28Þ

where DT
i ðnÞ, K(n), l(n), and Dij(n) are the thermal diffusion coeffi-

cient, thermal conductivity, viscosity, and the species diffusion
coefficient, respectively. The parameter n in these expressions refers
to the number of terms used in the Sonine polynomial expansion
[7]. Usually n = 1 gives acceptable results in approximating the
transport properties, except for the thermal diffusion DT

i which van-
ishes for n = 1, and therefore, at least two terms should be consid-
ered in the Sonine expansion. It is apparent that ai1 and bi0 cannot
be obtained explicitly from the above equations, and rather cum-
bersome equations given in reference [7] have to be solved to deter-
mine them exactly. However, the following approximations may be
employed to obtain explicit expressions for these coefficients [8]:

l �
XNS

i¼1

ni

n
li ð29Þ

K �
XNS

i¼1

ni

n
Ki ð30Þ

Thus, Eqs. (26) and (27) yield
ai1 � �
4
5

Ki

nkB

ffiffiffiffiffiffiffiffiffiffiffi
mi

2kBT

r
ð31Þ

bi0 �
2

nkBT
li ð32Þ

Having determined the Sonine expansion coefficients ai0, ai1,
bi0 and cj

i0 in terms of the usual transport properties, they
can be employed to establish the slip/jump conditions at a solid
boundary. The concentration-jump condition (Eq. (7)) can be
rewritten as
ni;w

ni;s

Tw

Ts

� �1=2

¼ hi

hi � ci
1þ li

3nkBTs

oUx

ox
þ oUz

oz
� 2

oUy

oy

� �� �
s

þ ð2� hiÞ
2ðhi � ciÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pmi

2kBTs

r
2n2

niq

XNS

j¼1

mjDijdjy �
2DT

i

nimi

o ln T
oy

" #
s

ð33Þ
Before proceeding with the velocity-slip and temperature-
jump equations, it would be useful to make a connection between
the recombination coefficient ci and the reaction rate constant
kw,i so that the applicability of the concentration-jump in react-
ing/non-reacting flows is clarified. Utilizing Eqs. (25) and (28),
the net flux of species i at the surface (see Eq. (6)) can be expressed
as

Fi ¼ �DT
i
o ln T
oy
þ
XNS

j¼1

n2mimj

q
Dijdjy ð34Þ

If the wall is non-catalytic and no reaction occurs at the wall, the
net flux at the outer edge of the Knudsen layer should be zero.
Therefore, the concentration-jump expression at the wall is no long-
er needed (since the wall number density is only useful in deter-
mining the reaction rate) and Eq. (34) can be used directly as the
proper boundary condition as follows:

�DT
i
o ln T
oy
þ
XNS

j¼1

n2mimj

q
Dijdjy ¼ 0 ð35Þ

On the other hand, if reaction takes place at the wall, then the net
flux of species i at the edge of the Knudsen layer should match
the production rate of the same species at wall. As an example,
consider a first-order recombination reaction on a catalytic surface.
For this case, the net flux at the edge of the Knudsen layer is given
by:

�DT
i
o ln T
oy
þ
XNS

j¼1

n2mimj

q
Dijdjy ¼ �kw;ini;wmi ð36Þ

where the right-hand side represents the rate at which species i is
consumed at the wall and the minus sign indicates that the net flux
is in the direction opposite to the surface normal. For a first-order
recombination, the reaction rate constant kw,i can be expressed in
terms of the recombination coefficient ci as [13]

kw;i ¼ ci

ffiffiffiffiffiffiffiffiffiffiffi
kBTw

2pmi

s
ð37Þ
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Therefore, Eq. (36) can be expressed as

�DT
i
o ln T
oy
þ
XNS

j¼1

n2mimj

q
Dijdjy ¼ �cini;wmi

ffiffiffiffiffiffiffiffiffiffiffi
kBTw

2pmi

s
ð38Þ

Note that the consumption (or production) rate of species depends
on the wall number density prior to reaction on the surface. Substi-
tuting ni, w from Eq. (33) into Eq. (38), the following explicit expres-
sion for ni, s is obtained:

ni;s ¼
2hi�hici

2hici

� �
2p

kBTsmi

� �1
2

DT
i

o ln T
oy �

PNS
j¼1

n2mimj

q Dijdjy

h i
s

1þ li
3nkBTs

oUx
ox þ

oUz
oz � 2 oUy

oy

� �
s

ð39Þ

This expression can be used as the boundary condition at the outer
edge of the Knudsen layer when there is a first-order recombination
reaction at the wall. For more complicated reactions, the same pro-
cedure can be followed except that the proper production rates of
species at the wall should be specified for the flux matching condi-
tion at the edge of the Knudsen layer (Eq. (36)).

Using the same procedure as concentration-jump, the velocity-
slip in the x direction (Eq. (11)) can be rewritten in terms of the
usual transport properties as
Ux ¼

PNS
i¼1ni;s

ffiffiffiffiffiffi
mi
p

hi
DT

i
nimi
þ Ki

5kBn

� �
o ln T

ox � n2

qni

PNS
j¼1mjDijdjx

� �
þ ð2� hiÞ li

nmi

ffiffiffiffiffiffiffiffi
pmi

2kBT

q
oUx
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oUy

ox

� �h i
sPNS

i¼1ni;s
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p

hi 1þ li
3nkBTs
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oUz
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oy

� �� �
þ ð2�hiÞ

2

ffiffiffiffiffiffiffiffiffi
pmi

2kBTs

q
2n2

niq

PNS
j¼1mjDijdjy �

2DT
i

nimi

o ln T
oy

� �h i
s

ð40Þ
Note that the velocity-slip in the z direction can be obtained
similarly.

In order to simplify the temperature-jump expression (Eq. (24)),
one can first relate the number of internal degrees of freedom f to
the specific heat ratio �c as [21]

�c ¼ rþ 2
r
¼ fþ 5

fþ 3
ð41Þ

Thus the temperature-jump can be rewritten as
Ts

Tw
¼

PNS
i¼1

ni;sffiffiffiffi
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p �cþ1

4ð�c�1Þ þ
U2mi

4kBTw
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h i
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i
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pmi

2kBTs
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p
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i
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i
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nimi
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q
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nimi
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Y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pmi

2kBTs

r
2n2

niq

XNS

j¼1

mjDijdjy �
2DT

i

nimi

o ln T
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 !
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Y2 ¼
5
8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pmi

2kBTs

r
� 4Ki

5kBn
þ 2DT

i

nimi

 !
o ln T
oy
þ 2n2

qni

XNS
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mjDijdjy

" #
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ð42:cÞ

Y3 ¼
�cþ 1

4ð�c� 1Þ þ
li

12nkBTs

3�c� 1
ð�c� 1Þ
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þ oUz
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oUy

oy
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Before further simplification, it is useful to rewrite these equations
in terms of Newtonian viscous stresses and species mass fluxes gi-
ven by

syy
i ¼

2li

3
oUx

ox
þ oUz

oz
� 2

oUy

oy

� �
ð43:aÞ

sxy
i ¼ �li

oUx

oy
þ oUy

ox

� �
ð43:bÞ
Jiy ¼
n2mi

q

XNS

j¼1

mjDijdjy � DT
i
o ln T
oy

ð43:cÞ

Jix ¼
n2mi

q

XNS

j¼1

mjDijdjx � DT
i
o ln T

ox
ð43:dÞ
s ð42:aÞ
Thereby, (33), (40) and (42.a) can be written as
ð44Þ

ð45Þ

i

ffiffiffiffiffiffiffiffiffi
pmi

2kBTs

q �i
s

ð46Þ
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4. Simplifications for a single-component gas

As a practical case of the slip/jump equations obtained in the
previous sections, a single-component gas is considered here. In
this case, the recombination coefficient is set equal to zero (no
reaction at the wall) and, ignoring self-diffusion, the terms involv-
ing molecular diffusion are zero. Hence, for a single-component
gas, the slip/jump boundary conditions become

qw

qs

Tw

Ts

� �1=2

¼ 1þ syy

2p

� �
s
� 2� h

h

� � ffiffiffiffiffiffiffiffiffiffiffi
p

2RTs

r
DT
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o ln T
oy

ð47Þ
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� 2�h
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 ffiffiffiffiffiffiffip
2RTs

p DT
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o ln T
oy

ð48Þ
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4RTw
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p
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oy
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K
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h i
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ð49Þ

where qs = mns and qw = mnw are the densities of the gas at the edge
of the Knudsen layer and at the wall, respectively. In deriving these
equations, no simplifying assumptions were made, and therefore,
they can be used for any general single-species gas flow over solid
surfaces. However, the form of velocity-slip and temperature-jump
boundary conditions is still different from those usually encoun-
tered in the literature. In order to further simplify these equations,
some assumptions must be made. First, consider the velocity-slip
equation. Neglecting thermal diffusion, Eq. (48) can be written as:

Ux 1þ syy

2p

� �
s
¼ K

5p
oT
ox
þ 2� h
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� �
l
q

ffiffiffiffiffiffiffiffiffiffiffi
p
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oy
þ oUy

ox

� �� �
s

ð50Þ
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ð56Þ
where sxy has been substituted from Eq. (43.b). Next, thermal con-
ductivity K and viscosity l can be expressed, to a first-order approx-
imation, in terms of the mean-free-path k as [1]

l ¼ 5
16

qk
ffiffiffiffiffiffiffiffiffiffiffiffi
2pRT
p

ð51:aÞ

K ¼ 15
4

Rl ð51:bÞ

Substituting these equations into Eq. (50) results in

Ux 1þ syy

2p

� �
s
¼ 3l

4qTs

oT
ox
þ 5p

16
2� h

h

� �
k

oUx

oy
þ oUy

ox

� �� �
s

ð52Þ

The numerical factor of 5p/16 is almost equal to unity. The normal
viscous stress syy is usually much smaller (if not zero) than the total
pressure, which makes the term syy/2p negligible compared to 1.
Moreover, in many flows oUy/ox� oUx/oy. All of these can be easily
used to further simplify Eq. (52).

In the same manner, the temperature-jump boundary condition
for single-species gas flows can be further simplified if thermal
diffusion is neglected. Setting DT = 0 and rearranging Eq. (49)
yields
Ts � Tw ¼
5p
16

2� h
h

� �
2�c

�cþ 1

� �
k
Pr

oT
oy
� syy

2p
3�c� 1
�cþ 1

Ts � Tw

� ��

þ �c� 1
�cþ 1

� �
1þ syy

2p

� �
U2

R

#
s

ð53Þ

As indicated above, 5p/16 ffi 1, and syy/2p� 1 if not zero. Thus,
the temperature-jump equation takes the following simplified
form:

Ts � Tw ¼
2� h

h

� �
2�c

�cþ 1

� �
k
Pr

oT
oy
þ �c� 1

�cþ 1

� �
U2

R
ð54Þ

Note that the last term on the right-hand side of Eq. (54) is widely
stated as U2/4R in the literature without acknowledging the associ-
ated monatomic gas assumption. Clearly, the term ð�c� 1Þ=ð�cþ 1Þ is
equal to 1/4 only for a monatomic gas for which �c ¼ 5=3.
5. Comparison with existing models

In order to compare the results of the present study with exist-
ing expressions, the underlying assumptions in each investigation
should be scrutinized. First of all, it should be emphasized that the
boundary conditions obtained in the current work are for the gen-
eral case of multi-component polyatomic gas flows. In this section,
the results of the current work will be compared with the results
found in references [13,15,18].

The expression for concentration-jump in reference [13]
matches exactly the one obtained in the present work. The veloc-
ity-slip and temperature-jump expressions of reference [13], in
the current notation, can be written as
The accommodation coefficient is assumed to be the same for all
species in references [13 and 15] in the derivation of velocity-
slip and temperature-jump boundary conditions. Therefore, for
comparison purposes, we will also assume that hi = h. The impro-
per choice of reference velocity in the calculation of fluxes is
responsible for the incorrect velocity-slip expression given
above. In the context of kinetic theory, three different velocities
are usually involved: the total molecular velocity V, the mass
averaged velocity U, and the peculiar (thermal) velocity
V0 = V � U. When dealing with conserved quantities (mass,
momentum and energy) there might be confusion about which
velocity to use, especially in the half-flux method. Although
the velocity distribution functions, i.e., the Chapman–Enskog
and Maxwellian distributions, are written in terms of the pecu-
liar velocity [1,2], the fluxes of conserved quantities should be
expressed in terms of the total velocity. However, in [13 and
15], the peculiar velocity was used in the description of con-
served quantities. Furthermore, it should be noted that in the
specular-diffusive reflection model, the velocity distribution of
the molecules diffusively released from the wall should be a nor-
mal distribution centered around zero, as given in the last term
of Eq. (1). However, [13 and 15] incorrectly used a Maxwellian
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distribution centered around the mass averaged velocity for the
diffusively released molecules. Finally, a comparison of Eq. (55)
with (12), shows that there is a difference in the coefficient of
ai1, which is likely due to an error in reference [13], since the re-
sults of the current work yield a correct expression in the case of
a single-component gas.
Ts

Tw

� �3=2
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ni;wffiffiffiffi

mi
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ð60Þ
The first difference that is evident when comparing the temper-
ature-jump expressions is the effect of polyatomic gas flows, char-
acterized by f. Since in reference [13] the change in internal energy
of gas molecules upon receding from the wall is not included, the
resulting temperature-jump expression is for the special case of
f = 0. Setting f = 0 in Eq. (24), the denominator of the expressions
is observed to be the same. The term U2mi/4kBTw, which is related
to friction at the surface due to velocity-slip, is missing in the
expression provided in reference [13]. This difference in the nom-
inator of the two expressions also originates from the improper
choice of reference velocity in calculation of fluxes at the edge of
the Knudsen layer, as discussed earlier.

The concentration-jump, velocity-slip and temperature-jump
expressions of reference [15], in the present notation, can be writ-
ten as
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ð59Þ
The concentration-jump expression in reference [15] is incomplete
since the surface reaction parameter ci is not present in the general
expression, unlike all other references and the current work. Also,
although not mentioned explicitly, it seems that h is assumed to be
equal to unity in the final presentation of the concentration-jump
expression. Taking the above remarks into account, Eq. (57) resem-
bles the concentration-jump boundary condition of the current
work, Eq. (7), assuming ci = 0 and h = 1, except for a minus sign in
the last term. Considering the results of other references [13,18],
it seems that this difference arises from a calculus or typographical
error in the result of reference [15].

Similar to reference [13], in reference [15] the improper choice
of reference velocity results in the omission of some important
terms in the denominator of Eq. (58) as compared to Eq. (12). Also,
the effect of polyatomic gas flows, characterized by f, is not in-
cluded in the derivation of the temperature-jump expression of
reference [15]. Furthermore, friction at the surface due to veloc-
ity-slip, U2mi/4kBTw, is missing in their expression. These differ-
ences are due to the reasons discussed earlier about the results
of reference [13]. Another important difference is the second term
in the numerator of Eq. (59) involving thermal diffusion ai0 and
species diffusion djy. This difference arises from the fact that the
concentration-jump expression in this reference is not in agree-
ment with the present work.

The expression for concentration-jump and velocity-slip in ref-
erence [18] matches exactly with the ones obtained in the current
work. The temperature-jump boundary condition of reference [18],
in the present notation, can be written as
The only difference here with the current work is the effect of
internal energy of polyatomic gases. In fact Eq. (60) is the special
case of the temperature-jump boundary condition, Eq. (23), in
which the gas molecules are assumed to be monatomic, i.e., f = 0.

6. Conclusions

Based on the kinetic theory of gases, general concentration-
jump, velocity-slip and temperature-jump boundary conditions
were developed for reacting/non-reacting multi-component poly-
atomic gaseous flows over catalytic surfaces. The method used
here follows the approach taken by Grad [3] as an alternative to
the half-flux method usually employed in the derivation of the
slip/jump boundary conditions. A key objective of the present work
was to show in a clear and systematic manner the derivation of
these complex boundary conditions and to identify the origins of
different terms in each expression. This is expected to permit eas-
ier assessment of various terms, and thereby allow correct simpli-
fications to be made in specific cases.
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